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Abstract—The turbulent natural convection boundary layer next to a heated vertical surface is analyzed
by classical scaling arguments. It is shown that the fully developed turbulent boundary layer must be
treated in two parts: an outer region consisting of most of the boundary layer in which viscous and
conduction terms are negligible and an inner region in which the mean convection terms are negligible.
The inner layer is identified as a constant heat flux layer.

A similarity analysis yields universal profiles for velocity and temperature in the outer and constant
heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer)
as H, = gfiF ;6%/a® — oo yields analytical expressions for the buoyant sublayer profiles as

T-T, y\~ R
Y =K, = +A(Pr),
- z(") (Pr).

U y 1/3
E = K,(;) + B(Pr),
where K, K, are universal constants and A(Pr),B(Pr) are universal functions of Prandtl number.
Asymptotic heat transfer and friction laws are obtained as

Nu, = Cy(PrHY',  1,/pUf = C/(Pr),
where Cj;(Pr) is simply related to A(Pr). Finally, conductive and thermo-viscous sublayers characterized

by a linear variation of velocity and temperature are shown to exist at the wall.
All predictions are seen to be in excellent agreement with the abundant experimental data.

NOMENCLATURE H,, H number for constant temperature wall,
A,  universal function (37); _[9B(T,~T )X 62):
A,  universal constant (38); - o? ’
B, universal function (45); K,, universal constant (26) and (44);
By,  universal constant (44); K,,  universal constant (27) and (35);
C,,  drag coefficient, = rwz (54): Nu,, Nusselt number based on /,
pUj qwl F Ol .
Cy, universal function of Prandtl number, = apC AT, =\aatT )’
F ol \14 petw w
=Ny = ..._....2_(_,) (42); Pr,  Prandtl number, = v/a;
n o T, - T )\gpF, q,,  wall heat flux;
Cy, universal function of Prandt] number, Ra¥, modified Rayleigh number,
F OCZ /3 4
= o ( }(61); = gBFox (64):
aAT, \gBAT, v >
C,.  specific heat at constant pressure; T,  mean temperature;
F Gw (7): T;, inner temperature scale, constant heat
” pc, flux wall, = [F3*(gBa)~14] (25);
g, gravitational acceleration ; T,r. inner temperature scale, constant
H?,  H number for constant heat flux wall, temperature wall, = (T,, - T,,) (58);
GBFx* T,  outer temperature scale,
= (—T*) 9); = [F3P(gpo)~ 11 (19);
@ T,,  wall temperature;
AT, T-T,;
tPermanent address: Department of Mechanical AL, T,-To; el g
Engineering, State University of New York at Buffalo, T,  reference temperature infinite distance
Buffalo, NY 14214, US.A. from wall;
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U, mean velocity in x direction ;

Uy, the maximum velocity;

U,, inner velocity scale, constant heat
flux wall, = (gBF,a)t'* (24);

U,7, inner velocity scale, constant temperature
wall, = [gB(T,~ T, )a]'" (57);
U,  outer velocity scale, = (Fogf6)'" (18);
V, mean velocity in y direction
X, distance in direction parallel to wall;
¥ distance in direction perpendicular
to wall;
W, dimensionless outer variable,
= (y/6) (33);
y*,  dimensionless inner variable,
= (/) (34).
Greek symbols
o, thermal diffusivity ;
B, thermal expansion coefficient ;
d, outer length scale ;

dr.  temperature boundary-layer thickness,

0 ATw

dy,  velocity boundary-layer thickness,

= JE— dy R

.,-[) Um
1, inner length scale for constant heat
a3 1/4
flux wall, z( > {14);
gBF,

Wy,  inner length scale for constant tempera-

-2 13
ture wall, = { ] (59},

gB(T,—T,)
v, kinematic viscosity;
e density;
L wall shear stress.

1. INTRODUCTION

THe PROBLEM of the turbulent natural convection
boundary-layer flow next to a heated vertical surface
has been the subject of numerous investigations.
[1]-[18], [28]. In spite of the numerous measure-
ments, there is no consensus on the scaling relations
which should be applied to the data or even the basic
heat transfer law. The primary reason for this must
be the lack of convincing theoretical arguments as to
which dimensionless groups govern and which
physical phenomena dominate.

All theoretical efforts to data have depended on
analogies with the dynamics of the forced flow
boundary layer. The earliest attempt to analyze the
turbulent natural convection boundary layer on
vertical surfaces was due to Eckert and Jackson {10]
whose empirical approach depended on an assumed
power law temperature profile (later shown to be
seriously in error [1]). Bayley [11] carried out a
similar analysis which did correctly predict the
observed heat-transfer relationship for air, but
yielded little insight into the physics of the boundary
layer. More recently, there have been a number of

partially successful attempts to apply turbulence
computational models to the calculation of buoyant
flows next to vertical surfaces [12]-[16]. The first
three papers used simple eddy viscosity distributions
while the last two calculated the eddy viscosity from
dynamical equations for the turbulence. The recent
work of Raithby [27] is interesting in that in a semi-
empirical manner he anticipates the two-layer ana-
lysis given here.

Two recent attempts have been made to develop a
theory of natural convection boundary layers by
proposing scaling laws for the equations of motion.
Piau [18] attempted such an analysis using the wall
temperature (difference) and the friction velocity for
temperature and velocity scales. An outer length
scale was chosen to be the boundary-layer thickness
while the inner length scale was formed from the
friction velocity and the viscosity as in forced flows.
While this approach is known to be valid for forced
flows (c.f. Monin and Yaglom [19]), it will be seen
later to be incorrect here for two reasons: first, the
temperature and velocity scales for the inner and
outer boundary layer are different and second, the
friction velocity is not an independent parameter and
is not relevant to the problem. Coutanceau [7]
proceeded along different lines but failed to recognize
the inner—outer character of the flow; consequently,
his scaling laws were valid only for the region closest
to the wall.

Finally, we must note the theoretical work of
Priestly [20] and otherst and the related experiment
of Elder [21]. Priestly argued that for natural
convection from a vertical flat surface there must
exist a region of the flow which is characterized only
by the heat flux, the buoyancy parameter and the
distance from the surface. It follows immediately on
dimensional grounds that the profile of temperature
must depend on the inverse cube root of the distance
from the wall. Although Priestly’s arguments were
made for the atmosphere, Elder realized their
applicability to at least the natural convection flow
between differentially heated vertical parallel plates
of high aspect ratio. Although the Rayleigh number
of his experiment was so low that the turbulence may
not have been fully developed, he did demonstrate
the existence of a limited vy~ !"* range. Unfortunately,
this does not appear to have been pursued by other
investigators nor have the complete implications for
turbulent natural convection next to vertical surfaces
been realized until now.

In the remainder of this paper, the fully developed
turbulent natural convection boundary layers for
constant temperature and constant heat flux vertical
surfaces will be analyzed. Quter and inner flow
regions will be identified and it will be shown that
the inner region is a constant heat flux layer. This
constant heat flux layer will be seen to consist of two

+Monin and Yaglom [19] Hst several other sources for
these arguments and state that they were even known to
Prandtl.
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major subdivisions and a buffer layer between them.
Conductive and viscous sublayers in which both
velocity and temperature profiles are linear will be
shown to exist next to the wall. Another subregion, a
buoyant sublayer, will be shown to exist at the outer
part of the constant heat flux layer where mean
velocity and temperature profiles depend on the cube
root and the inverse cube root of distance from the
wall respectively. These subregions are illustrated
graphically in Fig. 2. Finally, heat transfer and
friction laws will be proposed and all predictions will
be compared with the abundant experimental data.

PART I: THEORY

2. THE EQUATIONS OF MOTION FOR THE
MAIN PART OF THE BOUNDARY LAYER
The flow to be analyzed is shown in Fig. 1. A semi-
infinite vertical flat plate is maintained at a spacially
uniform and steady heat flux through the plate
surface.t For high enough heat flux the flow is
known to become unstable at some distance from the
leading edge and undergoes transition to a fully
developed turbulent flow (c.f. Gebhart [22]). It is this
fully developed turbulent state with which we are
concerned.
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F1G. 1. Schematic of turbulent boundary layer next to
heated wall.

We choose the positive x-direction to be opposite
to that of the gravitational acceleration and take
reference quantities at infinite distance from the
plate. Scale quantities for velocity, temperature, and
a length scale perpendicular to the plate are defined
as Uy, T, and 6 respectively. By making the usual
approximations for boundary-layer flow that 8/dx
~ 1/L « 8/dy ~ 1/, taking the limit as the Reynolds
and Peclet numbers defined by U,é/v and U,d/a

tIn Section 11 we shall show that the theory developed
below is the same for constant wall temperature fiow.
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F1G. 2. Diagram showing major regions of the boundary
layer. Region I includes conductive and thermo-viscous
sublayers. Region II is buoyant sublayer.

become infinite and using the y-momentum equation
to eliminate the pressure, the boundary-layer equa-
tions of motion to within a Boussinesq approxi-
mation can be reduced to

au au ¢ —
— 4V~ [- T-T,), (1
Ut 3 ay[ u]+gp(T—T,). (1)
au ov
i+ =0 2
oT orT 0 —
US4+ Ve~ —[—ut]. 3
0x dy 0y v] ®)

Capital letters refer to mean values while lower case
letters are used for fluctuating quantities. An overbar
is used to denote the ensemble or time average since
the flow is assumed statistically stationary.

The largest neglected term in equation (1) is 8[17

—v*]/0x, the streamwise gradient of the turbulent
normal stress difference. This term is of the order of
u?/U} which is small compared to the terms which
are retained; u is a characteristic scale for the
velocity fluctuations. In equation (3), the largest
neglected term is the streamwise gradient of the

turbulent vertical heat flux, 6[ur]/éx which is of the
order of ut/U,T, where t is a scale characteristic of
the turbulent temperature fluctuations. Note that the
succeeding analysis is not dependent on the neglect
of these terms.

We recognize that these equations can not be valid
near the wall because of the absence of the viscous
and conductive terms. The problem posed by this
absence is particularly serious since the phenomenon
being analyzed is a wall phenomenon; that is, all the
non-trivial boundary conditions on the solution are
imposed at the wall. Therefore, to complete the
description of the flow, we must seek a set of
equations which retain the viscous and conductive
terms and are valid near the wall. Before proceeding
to develop these inner equations, note that the outer
scales U,, T, and & have not been specified. To do
so, we must first decide which parameters govern the
outer flow. This can be accomplished only after the
inner or wall problem is solved since all constraints
on the flow are imposed at the wall.
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3. THE EQUATIONS OF MOTION FOR
THE NEAR WALL REGION

Our goal is to rescale the equations of motion so
that at least one viscous and one conduction term
are retained. If we define new inner velocity and
temperature scales as U, and Ty, it is straightforward
to show that the viscous term can be retained only if
the inner length scale is given by v/U, while retention
of the conduction term requires an inner length of
scale of a/U,. We call this new inner length scale »
and for now defer the choice between a and v. By
standard scaling procedures (cf. Tennekes and
Lumley [23]), it is straightforward to show that the
equations of motion for this inner layer are given by

d — U
0:i —uv+v— |+gB(T—T,), “
ey oy

b3} — 0T
~—|— —]. 5
0 ay[ vt +o 6y:| (5)

The pressure term has been eliminated using the y-
momentum equation. The leading neglected terms
are the mean convection terms which are of order
n/L. That this is indeed small will be justified later.

It is appropriate to note that because different
inner length scales are needed for the momentum
and temperature equations, v/U, and o/U; re-
spectively, certain modifications can be made to
equations (4) and (5) if the Prandt! number is large
or small compared to unity. For example, for Pr « 1,
there will exist a region close to the wall in which
conduction effects are important but a much thinner
region in which viscous effects are important. Thus,
our inner layer will in reality be two regions: an
inner—inner layer where viscous and conduction
terms must be included and an outer-inner layer
where only the conduction term must be included.
Similar arguments can be made for the limit at Pr
» 1. These effects will not affect the arguments to
follow as long as no assumptions are made regarding
the Prandtl number. Moreover, since equations (4)
and (5) contain both the viscous and conduction
terms, they will be valid as long as both the Reynolds
and Peclet numbers are large.

The momentum equation (4), can be integrated to
yield

J— ¥y
—uv+\!a—U+f gB(T-T,)dy ===, (6)
dy 0 P

where 1, is the wall shear stress. It is clear that
because of the presence of the buoyancy integral the
inner layer is not a constant stress layer. In forced
flow the wall shear stress measures the forcing of the
outer flow on the inner and provides the inner
boundary condition on the outer flow because of the
constant stress layer. In this flow, the wall shear
stress is not a fundamental parameter of the flow in
the sense that it is imposed on both the inner and
outer layers. Therefore it must be treated as a
dependent parameter.

Equation (5) for the temperature can similarly be
integrated to yield

—vt+a— = — = —F, (7)
oy pC,

where g, is the wall heat flux, C, is the specific heat
at constant pressure, and F, is defined by this
equation and is at most a function of x. Clearly, the
inner layer is a constant heat flux layer in the sense
that the total heat flux across the layer is inde-
pendent of distance from the wall. Thus, the heat flux
is a fundamental parameter, not only for the inner
layer but also for the outer layer. t is fundamental to
the inner layer because it directly measures the
“forcing” of the flow by the boundary conditions.
Because of the constant heat flux layer it also directly
measures the “forcing” of the outer flow by the inner
layer. We will use this fact later to determine the
outer scales.

4. UNIVERSAL PROFILES FOR
VELOCITY AND TEMPERATURE
For the natural convection turbulent boundary
layer on a semi-infinite flat plate, the only para-
meters which can govern the evolution of the flow
are those occurring either in the equations of motion
or those imposed at the wall. The only parameters
occurring in the equations of motion are o, v and gf.
At any given cross-section, the distance from the
leading edge x must be considered as a parameter
along with F; which is specified at the wall.
From this basic set of five independent parameters,
only two independent dimensionless ratios can be

formed ; we choose
v

Pr=" )
o
and
F 4
H* = gﬁa;’x . 9)

Equation (8) is readily recognized as the Prandtl
number while equation (9) defines what we will call
the H-number.

In general, we can write the functional form of the
mean velocity and temperature profiles as

U= Usfl (y/é, Hx’ Pr) (]O)

and

T—Tao =Ts.f2(y/5’ Hxa Pr)! (rn

where U, T, and § are scale quantities chosen from
the available parameters.

We hypothesize that the averaged profiles of mean
velocity and temperature depend only on the local
scales at any given cross-section x ; that is, the flow is
in local scale equilibrium.t With this, equations (10)
and (11) reduce to

U =U,fi(y/3,d/n, Pr) (12)

+This also applies to all other averaged quantities of
interest and can be justified by a similarity scaling of the
equations of motion for the inner and outer layers.
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and

T- Too = Tsz(y/éa 5/"’ Pr);“ (13)

where we have defined # to be

|: o3 ]1/4
n= .
gbF,

If we define an H-number based on the outer
length scale 4, it is clear that H, is related to the ratio
of inner to outer length scales by

é_ [gﬂF054:|”4 — g4
n L o« I
Thus, 8/ — o as H; - o and the H-number plays
the role played by the Reynolds number in turbulent
forced boundary layers (c.f. Monin and Yaglom [19],
Tennekes and Lumley [23]).

In the next few sections we shall be examining the
behavior of the profiles given by equations (12) and
(13) in the limit as 6/ — oo. This must be under-
stood to mean that the outer scale § must be much
larger than both the viscous and conduction length
scales. Thus, the relevance of the asymptotic analysis
based on J/n to finite H, experiments can be
expected to be determined in part by the Prandtl
number. For example, theory applicable to air flows
above a certain value of /7 might not be applicable
to a higher Prandt! number flow until 4/ reaches a
considerably larger value.

(14)

(15)

5. VELOCITY AND TEMPERATURE
“DEFICIT” LAWS

We look first at the outer region where y ~ 6. We
have previously shown that the equations of motion
in this region are independent of the Prandtl
number. Also, for the velocity and temperature
profiles to be well-behaved as 8/n — o, the functions
/1 and f, must be asymptotically independent of §/n.
Therefore, the functional forms reduce to

U—-Uy =Uyf10(/0) (16)
T-T, =Ty fr0y/9), (17)

where the subscript 0 is used to emphasize the outer
character of these functions. The velocity must be
referenced to a non-zero outer layer velocity to avoid
the necessity of accounting for the velocity change
across the inner layer thereby introducing a de-
pendence on « and v. In forced convection we
accomplish this by referencing to U, ; here we use
Uy, the velocity maximum.

The scale quantities U, and T, must be entirely
determined by local parameters. The only para-
meters which are relevant in this region are the
buoyancy g and the heat flux F, which is imposed
at the wall and is unchanged by the inner layer. On
dimensional grounds, the only choices for U, and T,
are

Uo = (Fogpo)'"? (18)

+As long as the Prandt! number dependence is retained,
the problems presented by this choice at high or low
Prandtl number are avoided.

and

To = F§*(gp)™'", (19)

where 6 is the local length scale which can be x-
dependent.

Equations (16-19) define the velocity and tem-
perature “deficit” laws for natural convection boun-
dary layers next to heated vertical surfaces. The
analogy with forced convection flows is clear (c.f.
Monin and Yaglom [19]).

6. A “LAW OF THE WALL”

We consider now the inner layer where y « 4. We
note first that the Prandtl number dependence must
be retained in the functional forms since it occurs
explicitly in the non-dimensionalized equations for
the inner layer. We can reformulate the functional
forms of equations (12) and (13) to better reflect the
inner character of this region. Equivalently, we can
write

U=U[fll(.V/"!(s/’7s Pr) (20)

and

T— Tw=TIfZI(y/’79 5/’% Pr)a (21)

where subscript I is used to emphasize the inner
character of these functions and the temperature is
referenced to the wall temperature T,,.

If y ~ n while 8/n — oo, the functional dependence
on d/q must vanish if the functions are to remain
well-behaved. Thus, we can write for the inner layer

U =U; f;(y/n, Pr) (22)

and

T-T, =T, f(y/n, Pr). (23)

The reason for referencing the temperature to the
wall temperature is now clear since equation (23)
depends only on inner quantities and does not
depend on the part of temperature drop across the
outer layer.

The scale quantities U; and T, can depend only on
v, o, gf and F, since these are the only available
independent parameters. On dimensional grounds

U; = (gpFa)"* (24)
and
T, = Fg/*(gpa)™ 1%, (25)

where we have used o instead of v for experimental
convenience.t Sinee equations (2.) and (23) retain a
Prandtl number dependence the choice is immaterial.

Equations (22-25) formulate a statement of the
law of the wall for natural convection boundary
layers next to vertical surfaces. The region of
applicability of this law corresponds exactly to the
constant heat flux layer obtained earlier. The
analogy with forced flow boundary layers is clear (c.f.

tIn air v ~a whereas in liquids v tends to be more
strongly temperature dependent than o.
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[19]). It is important to note that the Prandtl
number occurs explicitly in the equations for the
inner layer whereas it does not occur in the outer
layer equations because of the high Reynolds and
Peclet number assumptions.

7. THE BUOYANT SUBLAYER

Suppose there exists a flow region which is
sufficiently far from the wall that the viscous and
conduction effects are negligible but yet close enough
to the wall that the mean convection effects are not
important. In effect we require y <y« and
Pri* p« y« . If such a region exists, the only
governing parameters can be F, and gf. Thus,
gradients of mean velocity and temperature can
depend only on gfi, F, and the distance to the wall.
Dimensionally, we must have

dU K, |gBF, '?

&= [TT ‘ (26)
and

dT K, [ F2 J‘“ on

dy — 3 Lgpy*

where K, and K, are absolute constants and the
numerical factors are chosen for convenience.
These equations can be integrated directly to yield

U =K (gBFoy)"* +B" (28)

and

2 113
T-T,= Kz[—o} y 3 A" {29)
98
The integration constants A” and B” must be
functions of the thermal diffusivity and the kinematic
viscosity since these account for the effect of the wall
layer.

We call this intermediate layer the buoyant
sublayer by direct analogy with the inertial sublayer
of forced flows. It is clear that its existence is entirely
dependent on the magnitude of H, (or 6/n). The
buoyant sublayer can be identified as the outer part
of the constant heat flux layer in exactly the same
manner as the inertial (or logarithmic) sublayer is
identified with the outer part of the constant stress
layer in forced flows.

8. ALTERNATE APPROACH TO THE
BUOYANT SUBLAYER

In this section we will derive the buoyant sublayer
profile in a somewhat more formal manner than the
purely heuristic approach above. We begin by asking
whether there is a matched layer in which at fixed y
as the length scale ratio é/p — oo, the inner limit of
the outer solution is equal to the outer limit of the
inner solution. This approach has been used to
derive the logarithmic profile for the inertial sublayer
of forced flows (cf Tennekes and Lumiey [23]).
Physically, we are asking whether there is a flow

region in which only the turbulent heat transfer and
buoyancy are important.

For the inner layer near the wall, we have for the
mean temperature

T-T,
T - Jau(y/n, Pr)
and for the outer layer
T;:w = f20¥/6).
Restricting ourselves (for now) to the case where
the wall heat flux is specified, differentiating (30) and

(31) and equating derivatives, it can be shown that
the matching condition is

(30)

(31)

YR, Pry = PR L(), (32)
where we have defined
F=y/5 (33)
and
vyt =y (34)

It is immediately obvious that the two sides of
equation (32) are functions of independent variables
in the limit as §/n — co. It follows immediately that
in this limit, both sides of the equation must equal an
absolute constant, say — K,/3; that is,

dfy 1 K,
dy* 3 W 33)
and
dfyo 1 K,
et = 36
dy 3§ (38)
These can be integrated directly to yield
fa = Ky(y") "2+ A(Pr) 37
and
fzosz(.‘:’)_m“**Ax (38)
or in physical variables
T—- Tw o 1/4 _
L—F%%@——)— = Kaly/)" 1P+ AP (39)
and
T—T,)gps)'"
LRI Kooy 244, 40)

F33
K, and A, are universal constants and A is a
universal function of the Prandtl number.

Hence, there exists a matched layer and in it the
mean temperature profile varies as the inverse cube
root of the distance from the wall. The constants 4,
K, and the function A(Pr) can be determined from
experiment. It is clear that this information is
equivalent to the result derived in equation (29);
however, by imposing the physical constraint that
both the inner and outer representations yield the
same temperature at a given point in the matched
layer we obtain a considerable bonus.
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This condition can be satisfied only if

n 1/3
Ci! =A1H —A(Pr),

where Cj; is defined by

T F 3 1/4
Cl = r __ 0 ( a > = Nu,.
Tw_ Tao a(Tw_Tao) gﬂFO
(42)
Nu, is readily recognized as the Nusselt number

based, in this case, on the length scale #. It is clear
that as H, =d/n— oo, (#/6)"* -0, and Cy'—
—A(Pr). Thus C} is a function of Prandtl number
only.

It follows immediately from equation (42) that the
heat-transfer coefficient is independent of & (and
hence x) in the limit as H,— co. Thus the heat-
transfer law (expressed in the usual manner) is
asymptotically given by

Nu, = Cly(Pr)- H*', 43)

Thus the asymptotic matching of inner and outer
temperature profiless has yielded not only the
temperature profiles in the buoyant sublayer (and
thereby confirmed its existence) but also the heat-
transfer law.t The logarithmic heat-transfer law for
forced flow follows from similar considerations (c.f.
[19]) ‘

A similar matching exercise for the velocity
derivatives can be carried out to obtain

J10(7) = K, 77 + By, (44)
fuly™) =Ky 1P+ B(Pr) (45)
or in physical variables

Uu-u ,

WO)—M/ = K, (y/6)"* + B, (46)
0

U 1/3

GPFa)™ K, (y/m)'”> + B(Pr). (47)
0

Requiring that the profiles themselves match yields
the following constraint

Un n 173
— = B(Pr){ = —B,.
U, ( ”(5) !

It is clear that as /5 — o0, Upy/Uy,— —B,. This
result could have been expected in this limit since the
maximum velocity occurs in the outer flow and
should therefore be proportional to U,

Before concluding this section, it is worth noting
that the relationships derived above are critically
dependent on the choice of inner and outer scales.
For example, if the inner and outer scales are chosen
to be the same as in [18], logarithmic profiles result,
regardless of the particular choices. The choices
made here have been seen to be dictated directly by
the dynamics of the problem.

(48)

TAn interesting consequence of equation (41) is that we
have obtained the first correction term for finite H,. A
similar result in equation (47) for the velocity maximum
also shows the residual effect of low H,.

819

9. THE WALL HEAT FLUX AND THE
TEMPERATURE PROFILE NEAR THE WALL

In the constant heat flux layer the mean tempera-
ture equation has been seen to be given by equation
(7). As y — 0, the kinematic boundary condition on
the velocity at the wall requires that ot — 0.
Therefore, there must be a region adjacent to the
wall in which conduction dominates. Thus for y near
the wall, we have a conductive sublayer in which

eT _ 4

agz————

= —F,. 49
oC, 0 (49)

Integrating from the wall we obtain the dimension-
less form

T-T, y
= 1-Cy(2).
Tw_Too n

Alternately, non-dimensionalizing by the previously
defined inner temperature scale T, we obtain
T-T, »

T, n
Both of these forms will be seen to be useful for
comparison with experimental data. Clearly, the
temperature profile is linear at the wall. A similar
conclusion was reached by Nee and Yang [15] and
Coutanceau [7]. Note that the extent of this linear
region will clearly depend on the Prandtl number.

(50)

(51

10. THE VELOCITY PROFILE NEAR THE WALL

We saw that the momentum equation in the
constant heat flux layer could be written as equation
(6). We now confine our attention to the region near
the wall where because of the kinetic and no-slip

boundary conditions uv - 0. To emphasize the
thermally driven nature of this layer and to
distinguish it from its forced flow counterpart, we
will call this layer the thermo-viscous sublayer.

Using the no-slip condition at the wall, neglecting
the Reynolds stress term and using equation (50) for
the temperature, we obtain

_ T_W\ _gp(T,-T,)\ ,
U_(u)y 2( v >}

) 1Lgﬂ(T\v—Tw)c;,Jy3. )
6 vy

Clearly, the leading term is linear contrary to the
statement of [4]. This equation is exactly that
obtained by Nee and Yang [15]. Note that the
region of validity of this law is limited by two
considerations: first, the extent of the linear region in
the temperature profile and second, the extent of the
region in which the Reynolds stresses are negligible.
Both of these will depend on the Prandtl number.

We can write equation (52) for the velocity at the
wall in dimensionless form as

U C/—l
U_, = Pr‘l{ny+ A

y”+%y+3}, (53)
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where we have defined a friction coefficient C, as

T, Ul

A T
where u, is the friction velocity.
Since the velocity profile in the inner layer is
asymptotically independent of the outer flow (and
hence x), equation (53) must also be independent of
the outer flow. In particular, the velocity gradient at
the wall, the wall shear stress and hence C, must be
asymptotically functions of the Prandtl number only.
Thus it is clear that our inner velocity scale U, is to
within a function of Prandtl number proportional to
the friction velocity and we could have used u, for
the inner velocity scale (but not the outer!). There
are three reasons why this would be an inconvenient
choice: first, it is not a primitive variable as is U,
since it 1s not easily determined from the specified
boundary conditions ; second, the unknown function
of Prandtl number C(Pr) would make the matching
of Section 8 more difficult and third, in experiments
of this type one can seldom (if ever) measure the
velocity gradient at the wall accurately enough to
use the wall shear stress as a scaling parameter for
data.

34)

11. THE ASYMPTOTIC EQUIVALENCE
OF CONSTANT WALL TEMPERATURE AND
CONSTANT WALL HEAT FLUX FLOWS

For a number of years there has been a suspicion
that buoyancy-induced flows at constant wall tem-
perature and constant wall heat flux were closely
related {(c.f. Vliet and Liu [3]). From equations (41)
and {42) which were derived for constant wall heat
flux boundary layers it followed that the heat-transfer
coefficient defined by h=gq,/(T,—T,) was inde-
pendent of x in the limit as H¥ — co. Clearly this can be
true only if both g,, and T,,— T, are constant. Thus, in
this limit {corresponding to large x) the constant wall
heat flux and constant wall temperature boundary
layers must be identical.

Since a number of experiments have been per-
formed at constant wall temperature it is convenient to
use inner forms for the law of the wall which contain
(T, — T,) instead of Fy. These are given by

U = Ut fir /1, Pr), {(55)
T-T, = Ty [r(y/nr, Pr), (56)
where
Uyr = [Qﬁ(Tw—Tm)a]l/S, (57)
Ty =(T,-T,) (58)
and
o 1/3 %)
= [gﬂ(Tw— Tm)] (

A disadvantage of scaling with T,,— T, is that the
slope of the profiles in the buoyant sublayer are now
Prandtl number dependent. This results from the
Prandtl number dependence of Cjy.

It is straightforward to show that the heat-transfer

law of equation (43) can be expressed in constant
wall temperature variables as

Nu, = C,(PriH!?,

Fy ol
P —
Cuthr) LATW(QIJ’ATW

(60)

where

1/3°
) }:[C;,]‘” (61)

and

gp(T,— T, )x°
Ho= ot

(62)

12. THE UNIVERSALITY OF THE
CONSTANT HEAT FLUX LAYER
It is easy to show that equations (4) and (5) will
describe the inner layer even when the wall heat flux
(or temperature difference) is not constant as long as
the changes in the x-direction are more gradual than
those in the y-direction. It immediately follows that
the profiles derived for the constant heat flux layer
have a universal applicability to all turbulent natural
convection flows next to vertical surfaces, regardless
of the particulars of the boundary conditions. Thus
we can expect to find the buoyant sublayer profiles
for temperature and velocity, the conductive and
thermo-viscous sublayer profiles and even the local
heat transfer and friction laws applicable to a wide
variety of turbulent flows next to vertical walls. This
fact again has its counterpart in forced flows where
the logarithmic profiles find universal applicability to
a variety of internal and external flow geometries.

PART II: COMPARISON WITH EXPERIMENT
13. THE HEAT-TRANSFER LAW

Fujii et al. [5] conducted an extensive series of
experiments using vertical cylinders at constant wall
temperature. Since the heat transfer at the wall is
entirely governed by the wall layer, we can expect
that the heat-transfer relation will be the same as
that for plates as long as the radius of curvature is
much greater than the wall layer thickness.

Figure (3) is replotted from Fig. 14 of reference [5]
and includes measurements in water, spindle oil,
Mobil-therm oil and ethylene glycol, in addition to
Cheesewright’s air data. The Prandtl number range
for these measurements is 0.7-180. To account for

s 10k %’
8 i 1/3 Power
3
2 - 1/4 Power
:!x 2
E 10° |

FO 0 T N T Y S S O 0 A I W I R I
10!! 1010 ‘1012
{6r, Prig

Fi1G. 3. Heated transfer law in equation {64) is solid line
with slope of + 1/3. Shaded area shows data (adapted from
reference [5]).
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the variation of fluid properties over the boundary
layer, Fujii and his co-workers suggested using the
temperature loading factor (v,.,/v,)°?*' and evalu-
ating all other properties at infinity. The turbulent
data in Fig. (3) collapse remarkably around the law

v 0.21
(Nugw(;i) =0.13(Pr~"3H'3)

=0.13(Ra,)}?, (63)

where the subscripts w and oo mean that the fluid
properties are evaluated at the wall and at infinity,
respectively. This is consistent with the prediction of
equation (60).

Before considering the measurements at constant
wall heat flux, let us first consider the difference
between constant wall heat flux and constant wall
temperature flows undergoing transition to turbu-
lence. For a constant wall temperature flow, the
increased lateral heat transport that accompanies
transition can be accommodated by a large increase
in the wall heat flux. Thus, the fully developed
turbulent flow (and, in particular, the inner layer)
can very rapidly be established. This is not true,
however, for the constant wall heat flux flow and as
a consequence, the temperature must drop catas-
trophically. It is clear from the measurements of
Vliet and Liu [3] and Fujii et al. [5] that the wall
temperature drops below its equilibrium value and
slowly recovers. Thus, although both flows require a
development distance to approach equilibrium, the
constant wall heat flux case requires longer.

It is easy to show that the effect of allowing
measurements in this developing region to influence
the choice of an exponent for a heat-transfer law will
always be an exponent which is too low. Such was
the case in the measurements of Vliet and Liu [3]
who obtained n ~ 0.22-0.24 for flow in water. It
seems safe to conclude that the proposed law
(equations 42, 43) is valid when the flow is
sufficiently developed.

Since no attempt was made by Vliet and Liu to
account for viscosity variation across the flow, a
direct comparison is not possible with the equivalent
form of equation {63) which is

v 0.16
(Nux)m(v_w> = 0.22(Ra*)}/*.

©

(64)

It might be significant, however, that the coefficient
(0.22) is close to Vliet and Liu’s cold water data
correlation.

In summary, we can state that there is abundant
evidence that the proposed heat-transfer law is valid.
Moreover, at least for Prandtl numbers greater than
0.7, it appears that the unknown function of Prandtl
number in equation (60) is approximately given by

Cy(Pr)=0.13Pr '3; Pr>07. (65)
The coefficient may not correspond to the true

asymptotic value in view of the relatively low
Rayleigh numbers of the experiments.

14. THE LAW OF THE WALL

The most striking confirmation existing in the
literature of the universality of the temperature
profile near the wall is due to Fujii et al. [5] who
plotted AT/AT, vs Fyy/aAT,, for their cylinder data.
It follows immediately from equation (42) that
Fo/aAT,, o 57, Thus, to within a function of Prandtl
number, the plot is precisely that suggested by
equation (56). Fujii and his co-workers found that
for a narrow range of Prandtl numbers, the profiles
measured over a wide range of wall conditions
collapsed onto a single curve over most of the
boundary layer. The profiles for substantially dif-
ferent Prandtl numbers were different, however, as
expected.
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FiG. 4. Plot of temperature data of references [1] and [2]
in inner variables (wall temperature version).

A second direct confirmation in the literature is
due to Warner and Arpaci [8] who showed that for
a single constant wall temperature in air, most of the
temperature profile (except the outer part) could be
collapsed when plotted as AT/AT, vs y, the
dimensional distance from the wall. Since a, v, gf
and AT, were fixed, this is what would have been
expected from the arguments presented herein.

Figure 4 shows replots in inner variables of the
temperature profiles measured by Cheesewright [1]
and Smith [2] in air next to a constant temperature
wall. In Cheesewright’s experiment, both distance
along the plate and wall temperature difference were
varied while Smith varied only the distance. The
temperature profile is plotted as AT/AT, vs
(y/n7)~ /3 so that the buoyant subrange appears as a
straight line. The data not only collapse to a single
curve, but also exhibit a well-defined linear region
next to the wall and an inverse cube root region
where we would expect the buoyant sublayer to
appear. The temperature profile to an excellent
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approximation is given by

AT 1-0.1(y/%7) ; 0<y/pp <17 66
AT, 1.45(y/n;) "1 =035; 1.7<y/yy <D, (66)
where D increases as H, increases.t The inner break-
point at y/ny ~ 1.7 should not be expected for
different Prandtl numbers. From the considerations
following equation (42) there is about a 30%
discrepancy between the A(Pr) deduced from this
expression and the value computed from the C,(Pr)
deduced in equation (65); this is most likely due to
the fact that the fully developed state is not reached
in the experiments.
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FI1G. 5. Plot of velocity data from [2] in inner variables
(wall temperature version).

The velocity data of Smith [2] is plotted in Fig. 5
as U/(gBAT,x)'* vs (y/ny)'® so that again the
buoyant subrange will appear as a straight line. The
velocity data (not shown) of Cheesewright exhibit
the same internal consistency as that due to Smith
but have about a 10% greater slope in the buoyant
sublayer. In view of the great difficulty in measuring
in heated flow at low velocities and close to surfaces
and in view of the obvious internal consistency of
both sets of data, we attribute this to a difference in
calibration.

It is clear from the velocity plots that there is a
well-defined cube root region extending from about
y/nr = 1.7 which corresponds to that of the tempera-
ture profile. The best estimate for the form of the
velocity profile in the buoyant subrange is

UNgBAT, )" = 123(y/n)" ~9.3;

1.7< y/ne <D. (67)

tSince the outer profile must scale in outer variables
always, it is easy to show that D-#,/d const.

Note that in these variables the slope of 12.3 is valid
for Pr =0.7 only. Also, it is clear from the velocity
plots that there are no points close enough to the
wall to expect a linear range or to estimate the
friction coefficient.

The point of departure of the velocity profile from
a cube root dependence as y increases is somewhat
earlier than for the temperature profile. This is not
surprising since a boundary-layer flow is always
developing and since the development in this case is
driven by the temperature. This interpretation is
consistent with the fact that the extent of the
buoyant subrange for the velocity profile increases
with x when plotted in inner variables. Also, it
should be noted that the lowest Grashof number
profiles reported by both Cheesewright and Smith
were not plotted since the inner layer clearly was not
fully developed.

Figures 6 and 7 show plots of the temperature and
velocity in the heat flux version of the inner
variables. In these plots of AT, (gBx)!*/F3* vs
(y/m)~' and U/(gpFqa)'"* vs (y/n)"?, the slope of
the buoyant subrange should be Prandt! number
independent. In addition to the previously cited data
we have also plotted temperature data in water
(Fujii er al. {5]) and the velocity data in water (Vliet
and Liu [3] and mercury (Welty and Peinecke [17]).
Because of the scatter in the data, it is not possible to
make a reasonable determination of the Prandtl
number dependence of the A(Pr) and B(Pr) occur-
ring in equations (39) and (47). It does appear that
these functions increase monotonically with Prandtl
number. The slopes determined from the air data are
given by K, ~27 and K, ~ 5.6. Recall that these
should be universal constants. Recent experiments by
Qureshi and Gebhart [28] in water confirm this
value for K ,.

15. THE DEFICIT LAWS

The most extensive attempt to date to collapse the
velocity and temperature profiles to a single curve is
due to Vliet and Liu [3]. They plotted the data of
several investigations (including their own) as
AT/AT, vs y/0; and U/Uy vs y/0, where Uy, is the
maximum velocity and d, J, are boundary-layer
thicknesses defined by integrating the temperature
and velocity profiles. It is straightforward to show by
splitting the integrals and using the previously
defined inner and outer universal profiles that 4, is in
fact a legitimate measure of the outer length scale d.
&1, on the other hand, can be shown to be neither an
inner nor outer length scale since most of the
temperature drop occurs in the buoyant sublayer. As
a consequence, it should at most collapse the data
only over a limited intermediate range of distances
from the wall. This is consistent with the obser-
vations of Vliet and Liu [3]. Since é, has no
dynamical significance, its use is not recommended.

Figure 8 is adapted from the paper by Vliet and
Liu [3] and shows velocity profiles measured in air
and water. The authors point out the excelient
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FIG. 6. Plot of temperature data from [1, 2, 5] in inner
variables (heat flux version).
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Fig. 7. Plot of velocity data from [2, 3, 17] in inner
variables (heat flux version).
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FiG. 8. Plot of velocity from [1, 3] in outer variables
(adapted from [3]).

collapse of the data over the outer 90% of the
boundary layer. Table 1 summarizes the parameters
used in the scaling and calculates the ratios U,,/U,,.
The data are in excellent agreement with the
suggested outer scaling. The discrepancy of the
Up/Uj ratios is not surprising in view of the possible
integration errors, a lack of knowledge about the
actual parameters used by Vliet and Liu and by
Cheesewright and perhaps more importantly, the
relatively low Rayleigh numbers of the experiments.

Table 1.
d,(cm) Uy (cmfs)  Ug(cm/s)  Un/Ug
Air 7.16 87.8 10.1 8.73
Water 381 4.60 0.547 8.41
Water 208 3.66 0447 8.19

It does not seem possible to construct an outer
scale plot for the temperature from the data in the
literature because of the inaccuracies in measurement
at large distances from the wall and a lack of
information about the basic parameters in the
respective experiments. The trends in the measure-
ments appear to be consistent with the predictions
made here, however.

In summary, although the data is sparse, the
proposed outer scaling and the deficit laws appear to
be valid. It should be possible to construct composite
outer flows by combining the buoyant sublayer
profiles and empirical fits to the outer flow in the
manner which the well-known wake functions for
forced flow have been constructed (c.f. Monin and
Yaglom [19]).

16. SUMMARY AND CONCLUSIONS

Proceeding from the averaged equations of mo-
tion, we have seen the necessity of treating the
turbulent natural convection boundary layer on a
vertical surface in two parts—an outer flow which is
independent of conduction and viscosity effects
(equations 1-3), and an inner flow in which the mean
convection of momentum and heat is negligible
(equations 4 and 5). We have seen that this inner
layer is distinguished by having a constant total heat
flux ; hence, its name, the constant heat flux layer.

The local scale equilibrium of the boundary layer
allowed the derivation of universal profiles for
velocity and temperature for the inner and outer
regions. An overlap region of common validity was
shown to exist at high values of H, and was termed
the buoyant sublayer. In this region, the velocity and
temperature were dependent on the cube root and
inverse cube root of distance from the wall, re-
spectively. Regions of linear variation of velocity and
temperature were seen to exist next to the wall and
were termed the conductive and thermo-viscous
sublayers, respectively. Finally, heat transfer and
friction laws were derived for the fully developed
boundary layer.

An attempt was made to compare predictions with
the abundant experimental evidence. It was seen that
many of the conclusions of this paper could be
substantiated directly from the literature and others
followed immediately from replots of the data. In
particular, the heat-transfer law, the conductive
sublayer, and the existence of the buoyant sublayer
can be accepted as fact. In addition, agreement with
the outer scaling laws was shown to be highly
probable from the data. Because of the scatter in the
data, the unavailability of needed parameters and the
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relatively low Rayleigh numbers at which the
experiments were performed, firm quantitative con-
clusions about most of the constants were not
possible.

In conclusion, perhaps the most significant contri-
bution of this paper has been that it establishes a
framework within which definitive experiments can
be made. We have seen here that many of the
predictions made here existed in fragmentary form in
the literature. Now that these fragments have been
united into a single coherent whole, a new generation
of experiments can be carried out which are designed
specifically to fill in the missing information. Ad-
ditional theoretical work could be carried out to
calculate the functions A(Pr), B(Pr) and C(Pr),
perhaps from semi-empirical theories of turbulence.
This is particularly important since the confirmed
existence of a buoyant sublayer can give rise to new
computational models for the outer flow which
utilize the cube root profiles as inner boundary
conditions, thereby avoiding the difficult problem of
modeling the turbulence in the inner layer. The
extension of the developments here to include rough
walls is straightforward and is outlined in [29].
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UNE THEORIE DE LA COUCHE LIMITE TURBULENTE DE CONVECTION
NATURELLE PRES DES SURFACES VERTICALES ET CHAUDES

Résumé—La couche limite turbulente de convection naturelle prés d’une surface verticale et chaude est
analysée par des arguments classiques. On montre que la couche limite turbulente établie peut &tre traitée
en deux parties: une région externe représentant la plupart de la couche limite et dans laguelle les termes
de viscosité et de conduction sont négligeables, et une région interne dans laquelle les termes de
convection moyenne sont négligeables. La couche intérieure est identifiée 4 une couche avec flux
thermique constant.

Une analyse semblable donne des profils universels pour la vitesse et la température dans les deux
couches. Une étude asymptotique de ces profils dans la couche intermédiaire, lorsque H, = gfF 6%/«
-+ o0, donne des expressions analytiques pour les profils de cette couche:

- -13
=% Kz(l) +A(Pr)
T 4

U 113
= K,(X) +B(Pr),
U, n

ou K, K, sont des constantes universelles et A(Pr) et B(Pr) sont des fonctions universelles du nombre de
Prandtl. Des lois asymptotiques de transfert thermique et de frottement sont obtenues:

Nu, = Cy(PrHE', 1,/pU} = C,(Pr),

ot Cyu(Pr) est simplement reli¢ 3 A(Pr). Enfin on montre quil existe, 4 la paroi, des sous-couches
conductives et thermo-visqueuses caractérisées par une variation linéaire de la vitesse et de la
température.

Toutes les estimations sont en excellent accord avec les données expérimentales abondantes.

EINE THEORIE FUR TURBULENTE GRENZSCHICHTEN BEI FREIER
KONVEKTION AN BEHEIZTEN SENKRECHTEN FLACHEN

Zusammenfassung—Die turbulente natiirliche Konvektionsgrenzschicht, die an eine beheizte vertikale
Fliche angrenzt, wird mit der klassischen Ahnlichkeitstheorie untersucht. Es wird gezeigt, daB die
vollstindig ausgebildete turbulente Grenzschicht in zwei Bereichen behandelt werden muB: in einem duB
eren Bereich, der den grofiten Teil der Grenzschicht ausmacht und wo die Zhigkeits- und
Wirmeleitungsterme vernachldssigbar sind, und in einem inneren Bereich mit vernachldssigbaren
mittleren Konvektionstermen. Die innere Schicht wird als e¢ine Schicht mit konstantem Wirmestrom
angenommen.

Eine Ahnlichkeitsanalyse ergibt allgemeingiiltige Geschwindigkeits- und Temperaturprofile in der duf
eren Schicht und in der Schicht mit konstantem Wéarmestrom. Eine asymptotische Anpassung dieser
Profile in einer Zwischenschicht (der Auftriebsunterschicht) liefert mit H, = gfF,6%/2> gegen «
analytische Ausdriicke fir die Profile der Auftriebsunterschicht zu

T-T, y\T3
» =K2(:> +A(Pr)
I, i

U 1/3
— = KI(X) +B(Pr)
U, n

wobei K,, K, allgemeine Konstanten und A{Pr), B{Pr) aligemeine Funktionen der Prandtl-Zahl sind.
Asymptotische Wirmeiibertragungs und Widerstandsgesetze ergeben sich zu

Nux = ;;(P}‘)H:Uﬂ rw/pu? = C_{(P?')

wobei Cy(Pr) auf einfache Weise mit A(Pr) verkniipft ist. SchlieBlich wird gezeigt, daB wirmeleitende und
thermisch-viskose Unterschichten, die durch eine lineare Geschwindigkeits- und Temperaturverteilung

gekennzeichnet sind, an der Wand existieren. Alle Vorhersagen stimmen ausgezeichnet mit den
zahlreichen experimentellen Daten iiberein.

TEOPUS. CBOBOAHOKOHBEKTHUBHBIX TYPBYJIEHTHBIX NMOIrPAHHUYHBIX CHOEB
HA HATPETHIX BEPTHKAJIbHbIX MOBEPXHOCTSAX

Arsoranes — C noMoumsi0 coo0paxeHHit Pa3sMEPHOCTH AHANM3HPYETCE TYPOYNEHTHBIH €CTECTBEHHO-
KOHBCKTHBHREI Norpansunstl ciiolf Ha Harpetolt BepTHKAILHOH nosepxHocTH. [Tokasamo, 4To nos-
HOCTBIO Pa3BHTHil TypOyneHTHLI norpanuyHblll COH HEOGXOAMMO PACCMATPHBATH COCTORINHM H3
asyx yacTehi: BHewneH o6aacTH, xoTopas BEMIOYAET 6ONBUIYIO YACTE NOTPAHHNHOTO CIIOS H B XOTOPOi
MOXHO npcHEOpedl BAIKOCTBIO H TCMJIONPOBOAHOCTHIO, H BHYTpeRHel 06NACTH, B KOTOPOH MOXHO
npeHeGpeus CPENHHMH KOHBCKTHBHMIMH 4iCHaMH. BHyTpewmss obnacTh onpenensercs Kak croi
NIOCTOAHHOTO TENJIOBOrO NOTOKA.

C nomowpio anannsa nofobus NONYYEHE! YHHBEPCANLHBIE TPOGHIN CKOPOCTH U TEMNEPATYPH BO
prewnedi 061acTH Cios W B 06aCTH NOCTOSHHOTO TEMNOBOTO NOTOKAa. MCNonk3ys acHMITOTHYECKOe
CpPaIMBaNHe 3THX npoduicii B8 nPoMEXYTOUHOM cioe (noncnoe) npu H, = gfF,8%/a® - x, moxuHo
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MONYYHTD CJAEAYIOLHE AHAJIHTHYECKHE BHIPAXKEHHA At Npodmiedl B CBOGOHOKOHBEKTHBHOM 1104CNIOE

T-T, y)«ns U (y)l,'3
o klY)  raen; —=kl2) 4+ BPn,
T, ’(a s g =K +8M

roe K,, K, — yuuBepcanbHble nocrosHubie, a A(Pr), B(Pr) — yuusepcanbHbie QYHKLUHE KPHTEpHS
Tpanarns. ACHMNTOTHYECKHE 3aKOHBI NEPEHOCAa TENJA H TPEHHS 3anuChiBaloTCs B BHAE Nu, =
CH(Pr)H2'4, 1 /pUl = C(Pr), rie Cy(Pr) cBA3aHO NPOCTHIM COOTHOLUEHHEM ¢ A(Pr).

U HAKOHEIl, NOKa3aHO, YTO HA CTEHKEC HMEIOT MECTO Teﬂ]lOl‘lpOBOllSllIlﬂﬁ 1] TCpMOB)‘I}KHﬁ CJIoU,
XapaKTEPH3YIOIHECH JIHHEHHBIMH 3aKOHAMHM H3MCHCHHA CKOPOCTH M TeMmepaTyphl [lonyuennnie
Pe3YABTATH PAcyéTOB XOPOIUIO COMIACYIOTCA C HMCIOWAMHCA B DONBIIOM KOIHYECTBE IKCTIEPHMEH-

TAAbHbIMH Q3HHBIMH.



