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Abstract-The turbulent natural convection boundary layer next to a heated vertical surface is analyzed 
by ciassical scaling arguments. it is shown that the fully developed turbulent boundary layer must be 
treated in two parts: an outer region consisting of most of the boundary layer in which viscous and 
conduction terms are negligible and an inner region in which the mean convection terms are negligible. 
The inner layer is identified as a constant heat flux layer. 

A similarity analysis yields universal profiles for velocity and temperature in the outer and constant 
heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer) 
as H,, = g~~~~4/ff3 + a yields analytical expressions for the buoyant sublayer profiles as 
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where K,,Xz are universal constants and A(Pr),B(Pr) are universal functions of Prandtl number. 
Asymptotic heat transfer and friction laws are obtained as 

Nu, = CH(Pr)Hp4, ?Jpu: = C,(Pr), 

where Cg(Pr) is simply related to A(Pr). Finally, conductive and thermo-viscous sublayers characterized 
by a linear variation of velocity and temperature are shown to exist at the wall. 

All predictions are seen to be in excellent agreement with the abundant experimental data. 
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NOMENCLATURE 

universal function (37); 
universal constant (38); 
universal function (45); 
universal constant (44); 

Cf, drag coefficient, = 5 (54); 
I 

Nu,, 

G universal function of Prandtl number, 

c,* specific heat at constant pressure; T, 

Fat S(7); 
n 

T,, 
. r 

99 gravitational acceleration ; T ITI 

H,*> H number for constant heat flux wall, 

= ( ) g!! (9); 
10, 

T 
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H number for constant temperature wall, 

1 
(62); 

universal constant (26) and (44); 
universal constant (27) and (35); 
Nusselt number based on f, 

=(&)=E$j~ 
Prandtl number, = v/u; 
wall heat flux; 
modified Rayleigh number, 

mean temperature; 
inner temperature scale, constant heat 
flux wall, = [Fz’4(gBcr)-“4] (25); 
inner temperature scale, constant 
temperature wall, = (T, - T_) (58) ; 
outer temperature scale, 
= [F;‘3(g/lS)- 1’3] (19); 
wall temperature; 
T-T,; 

Tw-T,; 
reference temperature infinite distance 
from wall; 
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u, 

LJ,, 
u,, 

U IT 

UO, 

I’. 

x, 

.Y, 

.f, 

.v+> 

mean velocity in x direction ; 
the maximum velocity; 
jnner velocity scaIe, constant heat 
flux wall, = (g~F~~)ij4 (24); 
inner velocity scale, constant temperature 
wall, = [gB(r,- T,)u]“~ (57); 
outer velocity scale, = (F,g/?6)“3 (18); 
mean velocity in y direction ; 
distance in direction parallet to wall ; 
distance in direction perpendicular 
to wail; 
dimensionless outer variable, 

= (Y/h) (33); 
dimensionless inner variable, 

= (Y/V) (34). 

Greek symbols 

thermal diffusivity; 
thermal expansion coefficient ; 
outer length scale; 
temperature boundary-layer thickness, 

= 

velocity boundary-layer thickness, 

r 

“U 
= ,d.v; 

,o m 
inner length scale for constant heat 

114 

(14); 

inner length scale for constant tempera- 

ture walk = jgbtz_ T~!]1’3 (59); 

kinematic viscosity; 
density; 
wall shear stress. 

1. INTRODUCTION 

THE PROBLEM of the turbulent natural convection 
boundary-layer flow next to a heated vertical surface 
has been the subject of numerous investigations. 
[l]-[i8], [28]. In spite of the numerous measure- 
ments, there is no consensus on the scaling relations 
which should be applied to the data or even the basic 
heat transfer law. The primary reason for this must 
be the lack of convincing theoretical arguments as to 
which dimensionless groups govern and which 
physical phenomena dominate. 

Ail theoretical efforts to data have depended on 
analogies with the dynamics of the forced flow 
boundary layer. The earliest attempt to analyze the 
turbulent natural convection boundary layer on 
vertical surfaces was due to Eckert and Jackson [lo] 
whose empirical approach depended on an assumed 
power law temperature profile (later shown to be 
seriously in error [l]). Bayiey [l l] carried out a 
similar analysis which did correctly predict the 
observed heat-transfer relationship for air, but 
yielded little insight into the physics of the boundary 
layer. More recently, there have been a number of 

partially successful attempts to apply turbulence 
computational models to the calculation of buoyant 
flows next to vertical surfaces [l2]-[16]. The first 
three papers used simple eddy viscosity distributions 
while the last two calculated the eddy viscosity from 
dynamical equations for the turbulence. The recent 
work of Raithby [27] is interesting in that in a semi- 
empirical manner he anticipates the two-layer ana- 
lysis given here. 

Two recent attempts have been made to develop a 
theory of natural convection boundary layers by 
proposing scaling laws for the equations of motion. 
Piau [18] attempted such an analysis using the wall 
temperature (difference) and the friction velocity for 
tem~rature and velocity scales. An outer length 
scale was chosen to be the boundary-layer thickness 
while the inner length scale was formed from the 
friction velocity and the viscosity as in forced flows. 
While this approach is known to be valid for forced 
Aows (c.f. Monin and Yagiom [19]), it will be seen 
later to be incorrect here for two reasons: first, the 
temperature and velocity scales for the inner and 
outer boundary layer are different and second, the 
friction velocity is not an independent parameter and 
is not relevant to the problem. Coutanceau [7] 
proceeded along different lines but failed to recognize 
the inner-outer character of the flow; consequently, 
his scaling laws were valid only for the region closest 
to the wall. 

Finally, we must note the theoretical work of 
Priestly [20] and otherst and the related experiment 
of Elder [21]. Priestly argued that for natural 
convection from a vertical flat surface there must 
exist a region of the flow which is characterized only 
by the heat flux, the buoyancy parameter and the 
distance from the surface. It follows immediately on 
dimensional grounds that the profile of temperature 
must depend on the inverse cube root of the distance 
from the wall. Although Priestly’s arguments were 
made for the atmosphere, Elder realized their 
applicability to at least the natural convection flow 
between differentially heated vertical parallel plates 
of high aspect ratio. Although the Rayleigh number 
of his experiment was so low that the turbulence may 
not have been fully developed, he did demonstrate 
the existence of a limited y- ‘:3 range. Unfortunately, 
this does not appear to have been pursued by other 
investigators nor have the complete implications for 
turbulent natural convection next to vertical surfaces 
been realized until now. 

In the remainder of this paper, the fully developed 
turbulent natural convection boundary layers for 
constant tem~rature and constant heat flux vertical 
surfaces will be analyzed. Outer and inner flow 
regions will be identified and it will be shown that 
the inner region is a constant heat Aux layer. This 
constant heat flux layer will be seen to consist of two 

i Monin and Yaglom f19] list several other sources for 
these arguments and state that they were even known to 
Prandtl. 
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major subdivisions and a buffer layer between them. 
Conductive and viscous sublayers in which both 
velocity and temperature profiles are linear will be 
shown to exist next to the wall. Another subregion, a 
buoyant sublayer, will be shown to exist at the outer 
part of the constant heat flux layer. where mean 
velocity and temperature profiles depend on the cube 
root and the inverse cube root of distance from the 
wall respectively. These subregions are illustrated 
graphically in Fig. 2. Finally, heat transfer and 
friction laws will be proposed and all predictions will 
be compared with the abundant experimental data. 

PART I: THEORY 

2. THE EQUATIONS OF MOTION FOR THE 

MAIN PART OF THE BOUNDARY LAYER 

The flow to be analyzed is shown in Fig. 1. A semi- 
infinite vertical flat plate is maintained at a spatially 
uniform and steady heat flux through the plate 
surface.? For high enough heat flux the flow is 
known to become unstable at some distance from the 
leading edge and undergoes transition to a fully 
developed turbulent flow (c.f. Gebhart [22]). It is this 
fully developed turbulent state with which we are 
concerned. 
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FIG. 1. Schematic of turbulent boundary layer next to 

heated wall. 

We choose the positive x-direction to be opposite 
to that of the gravitational acceleration and take 
reference quantities at infinite distance from the 
plate. Scale quantities for velocity, temperature, and 
a length scale perpendicular to the plate are defined 
as U,, T, and 6 respectively. By making the usual 
approximations for boundary-layer flow that alax 
- l/L << a/ay 5 l/6, taking the limit as the Reynolds 
and Peclet numbers defined by U&/v and U,6/a 

Tin Section 11 we shall show that the theory developed 
below is the same for constant wall temperature flow. 
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Region I - Conductive Subtayer 8 Thermo-Viscous Subloyer 
Region II - Buoyant Subloyer 

FIG. 2. Diagram showing major regions of the boundary 
layer. Region I includes conductive and thermo-viscous 

sublayers. Region II is buoyant sublayer. 

become infinite and using the y-momentum equation 
to eliminate the pressure, the boundary-layer equa- 
tions of motion to within a Boussinesq approxi- 
mation can be reduced to 

(3) 

Capital letters refer to mean values while lower case 
letters are used for fluctuating quantities. An overbar 
is used to denote the ensemble or time average since 
the flow is assumed statistically stationary. 

The largest neglected term in equation (1) is a[u2 

-7]/ax, the streamwise gradient of the turbulent 
normal stress difference. This term is of the order of 
u*/Ug which is small compared to the terms which 
are retained; u is a characteristic scale for the 
velocity fluctuations. In equation (3), the largest 
neglected term is the streamwise gradient of the 

turbulent vertical heat flux, a[;]/& which is of the 
order of ut/U,T, where t is a scale characteristic of 
the turbulent temperature fluctuations. Note that the 
succeeding analysis is not dependent on the neglect 
of these terms. 

We recognize that these equations can not be valid 
near the wall because of the absence of the viscous 
and conductive terms. The problem posed by this 
absence is particularly serious since the phenomenon 
being analyzed is a wall phenomenon ; that is, all the 
non-trivial boundary conditions on the solution are 
imposed at the wall. Therefore, to complete the 
description of the flow, we must seek a set of 
equations which retain the viscous and conductive 
terms and are valid near the wall. Before proceeding 
to develop these inner equations, note that the outer 
scales U,, T, and 6 have not been specified. To do 
so, we must first decide which parameters govern the 
outer flow. This can be accomplished only after the 
inner or wall problem is solved since all constraints 
on the flow are imposed at the wall. 
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3. THE EQUATIONS OF MOTION FOR 
THE NEAR WALL REGION 

Our goal is to rescale the equations of motion so 

that at least one viscous and one conduction term 
are retained. If we define new inner velocity and 

temperature scales as U, and T,, it is straightforward 

to show that the viscous term can be retained only if 
the inner length scale is given by v/U, while retention 

of the conduction term requires an inner length of 

scale of a/U,. We call this new inner length scale 1 
and for now defer the choice between CI and v. By 

standard scaling procedures (cf. Tennekes and 
Lumley [23]), it is straightforward to show that the 
equations of motion for this inner layer are given by 

02; [-b+v%]+gB(T-7:.), (4) 

0 -$ [-,+.$J 

The pressure term has been eliminated using the y- 

momentum equation. The leading neglected terms 
are the mean convection terms which are of order 

q/L. That this is indeed small will be justified later. 
It is appropriate to note that because different 

inner length scales are needed for the momentum 

and temperature equations, v/U, and cc/U, re- 
spectively, certain modifications can be made to 

equations (4) and (5) if the Prandtl number is large 
or small compared to unity. For example, for Pr cc 1, 
there will exist a region close to the wall in which 

conduction effects are important but a much thinner 
region in which viscous effects are important. Thus, 
our inner layer will in reality be two regions: an 
inner-inner layer where viscous and conduction 

terms must be included and an outer-inner layer 
where only the conduction term must be included. 

Similar arguments can be made for the limit at Pr 
>> 1. These effects will not affect the arguments to 

follow as long as no assumptions are made regarding 

the Prandtl number. Moreover, since equations (4) 
and (5) contain both the viscous and conduction 
terms, they will be valid as long as both the Reynolds 

and Peclet numbers are large. 
The momentum equation (4), can be integrated to 

yield 

gB(T--T,)dy’ = 5, (6) 
P 

where z, is the wall shear stress. It is clear that 
because of the presence of the buoyancy integral the 
inner layer is not a constant stress layer. In forced 
flow the wall shear stress measures the forcing of the 
outer flow on the inner and provides the inner 
boundary condition on the outer flow because of the 
constant stress layer. In this flow, the wall shear 
stress is not a fundamental parameter of the flow in 
the sense that it is imposed on both the inner and 
outer layers. Therefore it must be treated as a 
dependent parameter. 

Equation (5) for the temperature can similarly be 
integrated to yield 

-t,t+ai;T= _q,= -F 

dJ PC, 
0% (7) 

where q, is the wall heat flux, C, is the specific heat 
at constant pressure, and F, is defined by this 

equation and is at most a function of x. Clearly, the 
inner layer is a constant heat flux layer in the sense 

that the total heat flux across the layer is inde- 

pendent of distance from the wall. Thus, the heat flux 
is a fundamental parameter, not only for the inner 
layer but also for the outer layer. It is fundamental to 

the inner layer because it directly measures the 
“forcing” of the flow by the boundary conditions. 
Because of the constant heat flux layer it also directly 

measures the “forcing” of the outer flow by the inner 
layer. We will use this fact later to determine the 
outer scales. 

4. UNIVERSAL PROFILES FOR 
VELOCITY AND TEMPERATURE 

For the natural convection turbulent boundary 
layer on a semi-infinite flat plate, the only para- 
meters which can govern the evolution of the flow 

are those occurring either in the equations of motion 
or those imposed at the wall. The only parameters 

occurring in the equations of motion are IX, ~8 and 88. 
At any given cross-section, the distance from the 

leading edge x must be considered as a parameter 
along with F, which is specified at the wall. 

From this basic set of five independent parameters, 

only two independent dimensionless ratios can be 

formed ; we choose 

Pr = “’ 
u 

and 

(8) 

Equation (8) is readily recognized as the Prandtl 

number while equation (9) defines what we will call 
the H-number. 

In general, we can write the functional form of the 

mean velocity and temperature profiles as 

and 

U = UJt (y/6, H,, Pr) (10) 

T- T, = T,,f,(y/J, H,, PrX (11) 

where U,, T, and 6 are scale quantities chosen from 
the available parameters. 

We hypothesize that the averaged profiles of mean 
velocity and temperature depend only on the local 
scales at any given cross-section x ; that is, the flow is 
in local scale equi1ibrium.t With this, equations (10) 
and (11) reduce to 

u = U,fl (y/fi, d/v, Pr) (12) 

tThis also applies to all other averaged quantities of 
interest and can be justified by a similarity scaling of the 
equations of motion for the inner and outer layers. 
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and and 
T - T, = Tsf2 (y/& 61% Pr),l- 

where we have defined q to be 

(13) 

(14) 

T, = F;‘3 (gjS)- 1’3, (19) 

where 6 is the local length scale which can be x- 
dependent. 

If we define an H-number based on the outer 
length scale 6, it is clear that H, is related to the ratio 
of inner to outer length scales by 

Equations (16-19) define the velocity and tem- 
perature “deficit” laws for natural convection boun- 
dary layers next to heated vertical surfaces. The 
analogy with forced convection flows is clear (c.f. 
Monin and Yaglom [ 191). 

s gBF,S4 1’4 -=I 1 u3 = H,'14. (15) 
v 

Thus, Sjr~ -+ cc as H,, + cc and the H-number plays 
the role played by the Reynolds number in turbulent 
forced boundary layers (c.f. Monin and Yaglom [19], 
Tennekes and Lumley [23]). 

In the next few sections we shall be examining the 
behavior of the profiles given by equations (12) and 
(13) in the limit as S/v -+ cc. This must be under- 
stood to mean that the outer scale 6 must be much 
larger than both the viscous and conduction length 
scales. Thus, the relevance of the asymptotic analysis 
based on 6/q to finite H, experiments can be 
expected to be determined in part by the Prandtl 
number. For example, theory applicable to air flows 
above a certain value of 6/q might not be applicable 
to a higher Prandtl number flow until 6/u reaches a 
considerably larger value. 

5. VELOCITY AND TEMPERATURE 
“DEFICIT” LAWS 

We look first at the outer region where y - 6. We 
have previously shown that the equations of motion 
in this region are independent of the Prandtl 
number. Also, for the velocity and temperature 
profiles to be well-behaved as S/q + co, the functions 
fi and fi must be asymptotically independent of 6/t1. 
Therefore, the functional forms reduce to 

u-uhf = U,fl,(Y/~L (16) 

T-L = T&,(Y/~, (17) 

where the subscript 0 is used to emphasize the outer 
character of these functions. The velocity must be 
referenced to a non-zero outer layer velocity to avoid 
the necessity of accounting for the velocity change 
across the inner layer thereby introducing a de- 
pendence on u and v. In forced convection we 
accomplish this by referencing to U, ; here we use 
CJM, the velocity maximum. 

The scale quantities U, and T, must be entirely 
determined by local parameters. The only para- 
meters which are relevant in this region are the 
buoyancy gp and the heat flux F, which is imposed 
at the wall and is unchanged by the inner layer. On 
dimensional grounds, the only choices for U, and T, 
are 

U, = (F,-,g/?6)1’3 (18) 

tAs long as the Prandtl number dependence is retained, 
the problems presented by this choice at high or low 
Prandtl number are avoided. 

6. A “LAW OF THE WALL” 

We consider now the inner layer where y K 6. We 
note first that the Prandtl number dependence must 
be retained in the functional forms since it occurs 
explicitly in the non-dimensionalized equations for 
the inner layer. We can reformulate the functional 
forms of equations (12) and (13) to better reflect the 
inner character of this region. Equivalently, we can 
write 

and 

(20) 

T- T, = TI.f2,(~lrl, VL f’r), (21) 

where subscript I is used to emphasize the inner 
character of these functions and the temperature is 
referenced to the wall temperature T,. 

If y - r) while S/q + co, the functional dependence 
on 6/q must vanish if the functions are to remain 
well-behaved. Thus, we can write for the inner layer 

and 

u = U, fi, (Y/V, Pr) (22) 

T- T, = TIfir (Y/V, W (23) 

The reason for referencing the temperature to the 
wall temperature is now clear since equation (23) 
depends only on inner quantities and does not 
depend on the part of temperature drop across the 
outer layer. 

The scale quantities U, and T, can depend only on 
v, CI, g/I and F, since these are the only available 
independent parameters. On dimensional grounds 

U, = (g/lF,a)1’4 (24) 

and 

T, = F;‘4(gpa)-1’4, (25) 

where we have used tl instead of v for experimental 
convenience.? Sinee equations (2:) and (23) retain a 
Prandtl number dependence the choice is immaterial. 

Equations (22-25) formulate a statement of the 
law of the wall for natural convection boundary 
layers next to vertical surfaces. The region of 
applicability of this law corresponds exactly to the 
constant heat flux layer obtained earlier. The 
analogy with forced flow boundary layers is clear (c.f. 

t In air v - bl whereas in liquids v tends to be more 
strongly temperature dependent than CC 
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[19]). It is important to note that the Prandtl 
number occurs explicitly in the equations for the 
inner layer whereas it does not occur in the outer 
layer equations because of the high Reynolds and 
Peclet number assumptions. 

7. THE BUOYANT SUBLAYER and for the outer layer 
Suppose there exists a flow region which is 

sufficiently far from the wall that the viscous and 
conduction effects are negligible but yet close enough 
to the wall that the mean convection effects are not 
important. In effect we require rl CC y CC (5 and 
PrJj4 ‘~1 CC Y CC 6. If such a region exists, the only 
governing parameters can be F, and g/X Thus, 
gradients of mean velocity and temperature can 
depend only on g& F, and the distance to the wall. 
Dimensionally, we must have 

T-T 
-d = .MYIG 

TO 
(31) 

Restricting ourselves (for now) to the case where 
the wall heat flux is specified, differentiating (30) and 
(31) and equating derivatives, it can be shown that 
the matching condition is 

Y+4’3.&(y+, Pu) = .i‘+‘qf&)@), (32) 

where we have defined 

region in which only the turbulent heat transfer and 
buoyancy are important. 

For the inner layer near the wall, we have for the 
mean temperature 

T-T 
-r = .f2,(YlV, Pr) 

T, 
(30) 

(*‘I and 

J = y/6 (33) 

and y+ = g/rl. (34) 

(27) 
It is immediately obvious that the two sides of 

equation (32) are functions of independent variables 

where K, and K, are absolute constants and the in the limit as 6/r/ -+ co. It follows immediately that 

numerical factors are chosen for convenience. in this limit, both sides of the equation must equal an 

These equations can be integrated directly to yiefd absolute constant, say - K,/3 ; that is, 

u = K1(g~Foy)‘~3 + B” 

and 

JI-~:~+A”. (29) 

The integration constants A” and B” must be 
functions of the thermal diffusivity and the kinematic 
viscosity since these account for the effect of the wall 
layer. 

We call this intermediate layer the buoyant 
sublayer by direct analogy with the inertial sublayer 
of forced flows. It is clear that its existence is entirely 
dependent on the magnitude of H,, (or 6/q). The 
buoyant sublayer can be identified as the outer part 
of the constant heat flux layer in exactly the same 
manner as the inertial (or logarithmic) sublayer is 
identified with the outer part of the constant stress 
layer in forced flows. 

8. ALTERNATE APPROACH TO THE 
BUOYANT SUBLAYER 

In this section we will derive the buoyant sublayer 
profile in a somewhat more formal manner than the 
purely heuristic approach above. We begin by asking 
whether there is a matched layer in which at fixed Y 
as the length scale ratio S/q + co, the inner limit of 
the outer solution is equal to the outer limit of the 
inner solution. This approach has been used to 
derive the Iogarithmic profile for the inertial sublayer 
of forced flows (cf. Tennekes and Lumley [23]). 
Physically, we are asking whether there is a flow 

dfi, 1 K, -= -_- 
&+ 3 (y+y 

and 

dfio 1 K, -= 
dJ 3 _F4’3 (36) 

These can be integrated directly to yield 

.fi, = Kz(y+)-1’3+A(Pr) 

and 

fiO = K,(j;)-‘!3-kAr 

or in physical variables 

(37) 

(38) 

(T- Tw)(gB’r = K (y/vl)- 113 +.A(&.) 
F;‘2 2 (39) 

and 

(T- rmkdli)“3 _ K (y/6)-1’3+,4 . 
~2/3 2 1 (40) 

0 

K, and A, are universal constants and A is a 
universal function of the Prandtl number. 

Hence, there exists a matched layer and in it the 
mean temperature profile varies as the inverse cube 
root of the distance from the wall. The constants A,, 
K, and the function A(h) can be determined from 
experiment. It is clear that this information is 
equivalent to the result derived in equation (29); 
however, by imposing the physical constraint that 
both the inner and outer representations yield the 
same temperature at a given point in the matched 
layer we obtain a considerable bonus. 
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l/3 

-AU+), (41). 

9. THE WALL HEAT FLUX AND THE 
TEMPERATURE PROFILE NEAR THE WALL 

In the constant heat flux layer the mean tempera- 

ture equation has been seen to be given by equation 
(7). As y + 0, the kinematic boundary condition on where C;, is defined by 

T, 114 

C;,=----= 

T, - T, 
= Nu,,. 

(42) 

Nu,, is readily recognized as the Nusselt number 

based, in this case, on the length scale q. It is clear 

that as H,, = S/q + co, (v/S)‘/~ -+ 0, and C&’ -+ 
-A(h). Thus Cg is a function of Prandtl number 

only. 
It follows immediately from equation (42) that the 

heat-transfer coefficient is independent of 6 (and 
hence x) in the limit as H, + co. Thus the heat- 
transfer law (expressed in the usual manner) is 
asymptotically given by 

Nu, = Cg(Pr) . H!J114. (43) 

Thus the asymptotic matching of inner and outer 

temperature profiles has yielded not only the 
temperature profiles in the buoyant sublayer (and 

thereby confirmed its existence) but also the heat- 
transfer 1aw.t The logarithmic heat-transfer law for 

forced flow follows from similar considerations (c.f. 

P91). 
A similar matching exercise for the vklocity 

derivatives can be carried out to obtain 

.fio(.i’) = K,j’113+B,, 

./“II~Y’) = Kly+1’3+B(Pr) 

(44) 

(45) 

or in physical variables 

u-uw 
(gb’F,6)1’3 

= K, (y/S)li3 + B, 

u 

(gBF,a)“4 
= K, (y/~)“~ + B(h). 

(46) 

(47) 

Requiring that the profiles themselves match yields 
the following constraint 

It is clear that as S/g-+ 00, Uw/UO + -B,. This 

Before concluding this section, it is worth noting 

result could have been expected in this limit since the 
maximum velocity occurs in the outer flow and 

that the relationships derived above are critically 

should therefore be proportional to U,. 

dependent on the choice of inner and outer scales. 
For example, if the inner and outer scales are chosen 
to be the same as in [IS], logarithmic profiles result, 
regardless of the particular choices. The choices 
made here have been seen to be dictated directly by 
the dynamics of the problem. 

t An interesting consequence of equation (41) is that we 
have obtained the first correction term for finite H,,. A 
similar result in equation (47) for the velocity maximum 
also shows the residual effect of low H,,. 

the velocity at the wall requires that vt + 0. 
Therefore, there must be a region adjacent to the 
wall in which conduction dominates. Thus for y near 

the wall, we have a conductive sublayer in which 

f3T a-2 -4w= -F, 
SY PC, 

(49) 

Integrating from the wall we obtain the dimension- 
less form 

(50) 

Alternately, non-dimensionalizing by the previously 

defined inner temperature scale T, we obtain 

T-T w= _r 
T, 11’ 

(51) 

Both of these forms will be seen to be useful for 
comparison with experimental data. Clearly, the 

temperature profile is linear at the wall. A similar 
conclusion was reached by Nee and Yang [15] and 
Coutanceau [7]. Note that the extent of this linear 

region will clearly depend on the Prandtl number. 

IO. THE VELOCITY PROFILE NEAR THE WALL 

We saw that the momentum equation in the 

constant heat flux layer could be written as equation 
(6). We now confine our attention to the region near 
the wall where because of the kinetic and no-slip 

boundary conditions uu + 0. To emphasize the 

thermally driven nature of this layer and to 
distinguish it from its forced flow counterpart, we 
will call this layer the thermo-viscous sublayer. 

Using the no-slip condition at the wall, neglecting 

the Reynolds stress term and using equation (50) for 
the temperature, we obtain 

~3. (52) 

Clearly, the leading term is linear contrary to the 

statement of [4]. This equation is exactly that 
obtained by Nee and Yang [15]. Note that the 
region of validity of this law is limited by two 

We can write equation (52) for the velocity at the 

considerations: first, the extent of the linear region in 

wall in dimensionless form as 

the temperature profile and second, the extent of the 
region in which the Reynolds stresses are negligible. 
Both of these will depend on the Prandtl number. 

u 
- = Pr-’ C,y+ _5?!$~1+2+f~+3{, 
UI { 

(53) 
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where we have defined a friction coefficient C, as 

(54) 

where u, is the friction velocity. where 
Since the velocity profile in the inner layer is 

asymptotically independent of the outer flow (and 
hence x), equation (53) must also be independent of 
the outer flow. In particular, the velocity gradient at 
the wall, the wall shear stress and hence C, must be 
asymptotically functions of the Prandtl number only. 
Thus it is clear that our inner velocity scale U, is to 
within a function of Prandtl number proportional to 
the friction velocity and we could have used uz for 
the inner velocity scale (but not the outer!). There 
are three reasons why this would be an inconvenient 
choice: first, it is not a primitive variable as is U, 
since it is not easily determined from the specified 
boundary conditions; second, the unknown function 
of Prandtl number C,(Pr) would make the matching 
of Section 8 more difficult and third, in experiments 
of this type one can seldom (if ever) ‘measure the 
velocity gradient at the wall accurately enough to 
use the wall shear stress as a scaling parameter for 
data. 

and 

12. THE UNIVERSALITY OF THE 
CONSTANT HEAT FLUX LAYER 

It is easy to show that equations (4) and (5) will 
describe the inner layer even when the wall heat flux 
(or temperature difference) is not constant as long as 
the changes in the x-direction are more gradual than 
those in the y-direction. It immediately follows that 
the profiles derived for the constant heat flux layer 
have a universal applicability to all turbulent natural 
convection flows next to vertical surfaces, regardless 
of the particulars of the boundary conditions. Thus 
we can expect to find the buoyant sublayer profiles 
for temperature and velocity, the conductive and 
thermo-viscous sublayer profiles and even the local 
heat transfer and friction laws applicable to a wide 
variety of turbulent flows next to vertical walls. This 
fact again has its counterpart in forced flows where 
the logarithmic profiles find universal applicability to 
a variety of internal and external flow geometries. 

II. THE ASYMPTOTIC EQUIVALENCE 
OF CONSTANT WALL TEMPERATURE AND 

CONSTANT WALL HEAT FLUX FLOWS 

For a number of years there has been a suspicion 
that buoyancy-induced flows at constant wall tem- 
perature and constant wall heat flux were closely 
related (c.f. Vliet and Liu [3]). From equations (41) 
and (42) which were derived for constant wall heat 
flux boundary layers it followed that the heat-transfer 
coefficient defined by h = q,/(T,- Ta) was inde- 
pendent of x in the limit as H,* + co. Clearly this can be 
true only if both qw and T, - T, are constant. Thus, in 
this limit (corresponding to large x) the constant wall 
heat flux and constant wall temperature boundary 
layers must be identical. 

Since a number of experiments have been per- 
formed at constant wall temperature it is convenient to 

use inner forms for the law of the wall which contain 
( Tw - T,,,) instead of F,,. These are given by 

u = U~~~*~~(Y/~~. Pr), (55) 

T-T,, = T,,f,,r(~l+, pr), (56) 

where 

and 

U,, = [sB(r,- T,)a]““, (57) 

1;~ = K-K,) (58) 

?r =[88(&)ll!3 (59) 

A disadvantage of scaling with I;,- T, is that the 
slope of the profiles in the buoyant sublayer are now 
Prandtl number dependent. This results from the 
Prandtl number dependence of CH. 

It is straightforward to show that the heat-transfer 

law of equation (43) can be expressed in constant 
wall temperature variables as 

Nu, = c~(Pr)H~.~s, (60) 

PART II: COMPARISON WITH EXPERIMENT 

13. THE HEAT-TRANSFER LAW 

Fujii et al. [S] conducted an extensive series of 
experiments using vertical cylinders at constant wall 
temperature. Since the heat transfer at the wall is 
entirely governed by the wall layer, we can expect 
that the heat-transfer relation will be the same as 
that for plates as long as the radius of curvature is 
much greater than the wall layer thickness. 

Figure (3) is replotted from Fig. 14 of reference [S] 
and includes measurements in water, spindle oil, 
Mob&therm oil and ethylene glycol, in addition to 
Cheesewright’s air data. The Prandtl number range 
for these measurements is 0.7-180. To account for 

i03 

i02 

10” iOi0 lOi 

FIG. 3. Heated transfer law in equation (64) is sotid line 
with slope of + l/3. Shaded area shows data (adapted from 

reference [S]). 
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the variation of fluid properties over the boundary 
layer, Fujii and his co-workers suggested using the 
temperature loading factor (v,Jv,)~.‘~ and evalu- 
ating all other properties at infinity. The turbulent 
data in Fig. (3) collapse remarkably around the law 

(NU,), (J$“‘” = 0.13(Pr-1’3Zf:‘3), 

= 0.13(R~,):~, (63) 

where the subscripts w and cc mean that the fluid 
properties are evaluated at the wall and at infinity, 
respectively. This is consistent with the prediction of 
equation (60). 

Before considering the measurements at constant 
wall heat flux, let us first consider the difference 
between constant wall heat flux and constant wall 
temperature flows undergoing transition to turbu- 
lence. For a constant wall temperature flow, the 
increased lateral heat transport that accompanies 
transition can be accommodated by a large increase 
in the wall heat flux. Thus, the fully developed 
turbulent flow (and, in particular, the inner layer) 
can very rapidly be established. This is not true, 
however, for the constant wall heat flux flow and as 
a consequence, the temperature must drop catas- 
trophically. It is clear from the measurements of 
Vliet and Liu [3] and Fujii et al. [5] that the wall 
temperature drops below its equilibrium value and 
slowly recovers. Thus, although both flows require a 
development distance to approach equilibrium, the 
constant wall heat flux case requires longer. 

It is easy to show that the effect of allowing 
measurements in this developing region to influence 
the choice of an exponent for a heat-transfer law will 
always be an exponent which is too low. Such was 
the case in the measurements of Vliet and Liu [3] 
who obtained n - 0.22-0.24 for flow in water. It 
seems safe to conclude that the proposed law 
(equations 42, 43) is valid when the flow is 
sufficiently developed. 

Since no attempt was made by Vliet and Liu to 
account for viscosity variation across the flow, a 
direct comparison is not possible with the equivalent 
form of equation (63) which is 

(NuJ,.(!$‘~ = 0.22(Ra:)F. (64) 
m 

It might be significant, however, that the coefficient 
(0.22) is close to Vliet and Liu’s cold water data 
correlation. 

In summary, we can state that there is abundant 
evidence that the proposed heat-transfer law is valid. 
Moreover, at least for Prandtl numbers greater than 
0.7, it appears that the unknown function of Prandtl 
number in equation (60) is approximately given by 

C,(Pr) = 0.13Pr-1/3; Pr > 0.7. (65) 

The coefficient may not correspond to the true 
asymptotic value in view of the relatively low 
Rayleigh numbers of the experiments. 

14. THE LAW OF THE WALL 

The most striking confirmation existing in the 
literature of the universality of the temperature 
profile near the wall is due to Fujii et al. [5] who 
plotted AT/AT,,, vs F,y/aAT, for their cylinder data. 
It follows immediately from equation (42) that 
F,/aAT, cc !I~. Thus, to within a function of Prandtl 
number, the plot is precisely that suggested by 
equation (56). Fujii and his co-workers found that 
for a narrow range of Prandtl numbers, the profiles 
measured over a wide range of wall conditions 
collapsed onto a single curve over most of the 
boundary layer. The profiles for substantially dif- 
ferent Prandtl numbers were different, however, as 
expected. 

inverse Cube Root 

Gr;iO-” 

Cheesewright 
A 572 ” I’ 

sml;h ” 
.2 0 3.71 ” 

\O 

0 I 
.5 

FIG. 4. Plot of temperature data of references [l] and [2] 
in inner variables (wall temperature version). 

A second direct confirmation in the literature is 
due to Warner and Arpaci [8] who showed that for 
a single constant wall temperature in air, most of the 
temperature profile (except the outer part) could be 
collapsed when plotted as AT/AT, vs y, the 
dimensional distance from the wall. Since a, v, g/l 
and AT, were fixed, this is what would have been 
expected from the arguments presented herein. 

Figure 4 shows replots in inner variables of the 
temperature profiles measured by Cheesewright [l] 
and Smith [2] in air next to a constant temperature 
wall. In Cheesewright’s experiment, both distance 
along the plate and wall temperature difference were 
varied while Smith varied only the distance. The 
temperature profile is plotted as AT/AT, vs 

(Y/rlT)-"3 so that the buoyant subrange appears as a 
straight line. The data not only collapse to a single 
curve, but also exhibit a well-defined linear region 
next to the wall and an inverse cube root region 
where we would expect the buoyant sublayer to 
appear. The temperature profile to an excellent 
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approximation is given by 

AT 1 -O.l(y/q,) ; O<ylr/,d1.7 p= 
AT,, l.45(yi~~)-1~3-0.35; 1.7<p/tlT<D, 

(66) 

where D increases as H, increases.? The inner break- 

point at Y/nr 2 1.7 should not be expected for 
different Prandtl numbers. From the considerations 

following equation (42) there is about a 30% 
discrepancy between the A(Pr) deduced from this 
expression and the value computed from the C,(Pr) 
deduced in equation (65); this is most likely due to 

the fact that the fully developed state is not reached 
in the experiments. 

o- 
0 1 2 3 

(/ ) Y 77 73 
T 

FIG. 5. Plot of velocity data from [2] in inner variables 
(wall temperature version). 

The velocity data of Smith [2] is plotted in Fig. 5 

as U/(gpAT,c()1’3 vs (~/q,)‘/~ so that again the 
buoyant subrange will appear as a straight line. The 
velocity data (not shown) of Cheesewright exhibit 
the same internal consistency as that due to Smith 
but have about a loo/, greater slope in the buoyant 
sublayer. In view of the great difficulty in measuring 
in heated flow at low velocities and close to surfaces 
and in view of the obvious internal consistency of 

both sets of data, we attribute this to a difference in 
calibration. 

It is clear from the velocity plots that there is a 
well-defined cube root region extending from about 
Y/nr E 1.7 which corresponds to that of the tempera- 
ture profile. The best estimate for the form of the 
velocity profile in the buoyant subrange is 

U/(g/?AT,,@ = 12.3(y/i/ljT)1’3 -9.3; 

1.7 4 y/rjT < D. (67) 

t Since the outer profile must scale in outer variables 
always, it is easy to show that D qT/6 const. 

Note that in these variables the slope of 12.3 is valid 

for Pr = 0.7 only. Also, it is clear from the velocity 
plots that there are no points close enough to the 
wall to expect a linear range or to estimate the 
friction coefficient. 

The point of departure of the velocity profile from 
a cube root dependence as y increases is somewhat 

earlier than for the temperature profile. This is not 
surprising since a boundary-layer flow is always 

developing and since the development in this case is 
driven by the temperature. This interpretation is 
consistent with the fact that the extent of the 

buoyant subrange for the velocity profile increases 
with x when plotted in inner variables. Also, it 

should be noted that the lowest Grashof number 
profiles reported by both Cheesewright and Smith 
were not plotted since the inner layer clearly was not 
fully developed. 

Figures 6 and 7 show plots of the temperature and 
velocity in the heat flux version of the inner 

variables. In these plots of AT,(gfia)1’4/Fi’4 vs 

(Y/n)- “3 and U/(gbF,or)‘!4 vs (y/r~)‘!~, the slope of 
the buoyant subrange should be Prandtl number 
independent. In addition to the previously cited data 
we have also plotted temperature data in water 

(Fujii et al. [5]) and the velocity data in water (Vliet 
and Liu [3] and mercury (Welty and Peinecke [17]). 

Because of the scatter in the data, it is not possible to 
make a reasonable determination of the Prandtl 

number dependence of the A(Pr) and B(Pr) occur- 
ring in equations (39) and (47). It does appear that 
these functions increase monotonically with Prandtl 
number. The slopes determined from the air data are 
given by K, N 27 and K, 2 5.6. Recall that these 
should be universal constants. Recent experiments by 
Qureshi and Gebhart [28] in water confirm this 
value for K,. 

15. THE DEFICIT LAWS 

The most extensive attempt to date to collapse the 

velocity and temperature profiles to a single curve is 
due to Vliet and Liu [3]. They plotted the data of 
several investigations (including their own) as 
AT/AT, vs y/6, and U/U,+, vs Y/6, where UM is the 
maximum velocity and 6,, 6, are boundary-layer 
thicknesses defined by integrating the temperature 
and velocity profiles. It is straightforward to show by 

splitting the integrals and using the previously 
defined inner and outer universal profiles that 6, is in 
fact a legitimate measure of the outer length scale fi. 
a,, on the other hand, can be shown to be neither an 
inner nor outer length scale since most of the 
temperature drop occurs in the buoyant sublayer. As 
a consequence, it should at most collapse the data 
only over a limited intermediate range of distances 
from the wall. This is consistent with the obser- 
vations of Vhet and Liu [S]. Since 6, has no 
dynamical significance, its use is not recommended. 

Figure 8 is adapted from the paper by Vliet and 
Liu [3] and shows velocity profiles measured in air 
and water. The authors point out the excellent 



A theory for natural convection turbulent boundary layers 823 

6- 

0 WATER-FUJII, ETAL 
X AIR-SMITH 

\ 

a 

0 
4”0\ 

I I I I I I 
1.0 .0 .6 d .2 

(/I y? 
-, /s 

FIG. 6. Plot of temperature data from [l, 2, 51 in inner 
variables (heat flux version). 
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FIG. 7. Plot of velocity data from [2, 3, 171 in inner 

variables (heat flux version). 
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?I 
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y/s, 
FIG. 8. Plot of velocity from [l, 31 in outer variables 

(adapted from [3]). 

collapse of the data over the outer 90% of the 
boundary layer. Table 1 summarizes the parameters 
used in the scaling and calculates the ratios Uw/U,. 
The data are in excellent agreement with the 
suggested outer scaling. The discrepancy of the 
U&J,, ratios is not surprising in view of the possible 
integration errors, a lack of knowledge about the 
actual parameters used by Vliet and Liu and by 
Cheesewright and perhaps more importantly, the 
relatively low Rayleigh numbers of the experiments. 

Table 1. 

Air 
Water 
Water 

6, (cm) ~JM (cm/s) U0 (cm/s) UMIU, 

7.16 87.8 10.1 8.73 
3.81 4.60 0.547 8.41 
2.08 3.66 0.447 8.19 

It does not seem possible to construct an outer 
scale plot for the temperature from the data in the 

literature because of the inaccuracies in measurement 
at large distances from the wall and a lack of 

information about the basic parameters in the 
respective experiments. The trends in the measure- 

ments appear to be consistent with the predictions 

made here, however. 
In summary, although the data is sparse, the 

proposed outer scaling and the deficit laws appear to 
be valid. It should be possible to construct composite 
outer flows by combining the buoyant sublayer 
profiles and empirical fits to the outer flow in the 

manner which the well-known wake functions for 
forced flow have been constructed (c.f. Monin and 

Yaglom [ 191). 

16. SUMMARY AND CONCLUSIONS 

Proceeding from the averaged equations of mo- 

tion, we have seen the necessity of treating the 

turbulent natural convection boundary layer on a 
vertical surface in two parts-an outer flow which is 
independent of conduction and viscosity effects 

(equations l-3), and an inner flow in which the mean 
convection of momentum and heat is negligible 
(equations 4 and 5). We have seen that this inner 
layer is distinguished by having a constant total heat 

flux; hence, its name, the constant heat flux layer. 
The local scale equilibrium of the boundary layer 

allowed the derivation of universal profiles for 
velocity and temperature for the inner and outer 

regions. An overlap region of common validity was 
shown to exist at high values of H,, and was termed 

the buoyant sublayer. In this region, the velocity and 
temperature were dependent on the cube root and 

inverse cube root of distance from the wall, re- 
spectively. Regions of linear variation of velocity and 

temperature were seen to exist next to the wall and 
were termed the conductive and thermo-viscous 

sublayers, respectively. Finally, heat transfer and 
friction laws were derived for the fully developed 
boundary layer. 

An attempt was made to compare predictions with 

the abundant experimental evidence. It was seen that 
many of the conclusions of this paper could be 
substantiated directly from the literature and others 
followed immediately from replots of the data. In 
particular, the heat-transfer law, the conductive 
sublayer, and the existence of the buoyant sublayer 
can be accepted as fact. In addition, agreement with 
the outer scaling laws was shown to be highly 
probable from the data. Because of the scatter in the 
data, the unavailability of needed parameters and the 
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relatively low Rayleigh numbers at which the 
experiments were performed, firm quantitative con- 
clusions about most of the constants were not 
possible. 

In conclusion, perhaps the most significant contri- 
bution of this paper has been that it establishes a 
framework within which definitive experiments can 
be made. We have seen here that many of the 
predictions made here existed in fragmentary form in 
the literature. Now that these fragments have been 
united into a single coherent whole, a new generation 
of experiments can be carried out which are designed 
specifically to fill in the missing information. Ad- 
ditional theoretical work could be carried out to 
calculate the functions A(Pr), B(Pr) and C,(Pr), 
perhaps from semi-empirical theories of turbulence. 
This is particularly important since the confirmed 
existence of a buoyant sublayer can give rise to new 
computational models for the outer flow which 
utilize the cube root profiles as inner boundary 
conditions, thereby avoiding the difficult problem of 
modeling the turbulence in the inner layer. The 
extension of the developments here to include rough 
walls is straightforward and is outlined in [29]. 
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UNE THEORIE DE LA COUCHE LIMMX TURBULE~E DE CONVECTION 
NATURELLE PRES DES SURFACES VERTICALES ET CHAUDES 

825 

R&m-La couche limite turbulente de convection naturelle p&s d’une surface verticale et chaude est 
analysee par des arguments classiques. On montre que la couche limite turbulente itablie peut &tre traitee 
en deux parties: une region exteme representant la plupart de la couche limite et dans laquelle les termes 
de viscositt et de conduction sont negligeables, et une region interne dans laquelle les termes de 
convection moyenne sont negligeables. La couche interieure est identifiee a une couche avec Rux 
thermique constant. 

Une analyse semblable donne des profils universels pour la vitesse et la temperature dans les deux 
couches. Une etude asymptotique de ces profils dans la couche intermediaire, lorsque H,, = ~/JF,S~;~’ 
-+ co, donne des expressions analytiques pour les profils de cette couche: 

ou K,, K2 sont des constantes universelles et A(Pr) et B(Pr) sont des fonctions universelles du nombre de 
Prandtl. Des lois asymptotiques de transfert thermique et de frottement sont obtenues: 

Nu, = C8(Pr)H:‘:4, Qpt’; = C,(Pr), 

oit &(Pr) est simplement reiic a A(Pr). Enfm on montre qu’il existe, a la paroi, des sous-couches 
conductives et thermo-visqueuses caracttrisees par une variation lineaire de la vitesse et de la 
temperature. 

Toutcs les estimations sont en excellent accord avec les donnees expbimentales abondantes. 

EINE THEORIE FUR TURBUL,E~E GRENZS~HICHTEN BEI FREIER 
KONVEKTION AN BEHEIZTEN SENKRECHTEN FLACHEN 

Zusammenfassung-Die turbulente natiirliche Konvektionsgrenzschicht, die an eine beheizte vertikale 
Fllche angrenzt, wird mit der klassischen Ahnlichkeitstheorie untersucht. Es wird gezeigt, dag die 
vollst%ndig ausgebildete turbulente Grenzschicht in zwei Bereichen behandelt werden mul3: in einem Bug 
eren Bereich, der den griit3ten Teil der Grenzschicht ausmacht und wo die Zahigkeits- und 
W~~eleitungste~e vernachl~sigbar sind, und in einem inneren Bereich mit vernachl~ssigbaren 
mittleren Konvektionstermen. Die innere Schicht wird als eine Schicht mit konstantem Wrtrmestrom 
angenommen. 

Eine Ahnlichkeitsanalyse ergibt allgemeingiiltige Geschwindigkeits- und Temperaturprofile in der aul3 
eren Schicht und in der Schicht mit konstantem Wlrmestrom. Eine asymptotische Anpassung dieser 
Profile in einer Zwischenschicht (der Auftriebsunterschicht) liefert mit H,, = g/lF,64/n3 gegen m 
analytische Ausdriicke fur die Profile der Auftriebsunterschicht zu 

wobei I<,, K, allgemeine Konstanten und A(B), B(Pr) allgemeine Funktionen der Prandtl-Zahl sind. 
Asymptotische W~~e~~~ragungs und Widerstandsgesetze ergeben sich zu 

Nu, = ~~(Pr)H~~‘4, z,/pU: = C,(Pr) 

wobei CR(B) auf einfache Weise mit A(Pr) verkniipft ist. Schlieglich wird gezeigt, dal3 warmeleitende und 
thermisch-viskose Unterschichten, die durch eine lineare Geschwindigkeits- und Temperaturverteilung 
gekennzeichnet sind, an der Wand existieren. Alle Vorhersagen stimmen ausgezeichnet mit den 

zahlreichen experimentellen,Daten iiberein. 

TEOPH.8 CBOBO~HOKOHBEKTWBHbIX TYPEYnEHTHbIX DOFPAHWYHbIX CJIOEB 
HA HAFPETbIX BEPTTMKAJIbHbIX DOBEPXHOCTIIX 

a---C noMombro coo6pa=errti pa3Mepmxm ammmpyemi ryp6yneHTH6lfi emecmemo- 

KOHBWTHBHark l-lOI'pMiSI'iHadl CnOi? Ha HaQBCTOii BepTHKiUlbHO~ nOBepXHOCTH. fiOKa3aH0, VT0 nOa- 

~o~rbio pa3~rrradf ~yneH~~ norpaxwuiid8 en02 f~ei%xo~~~o paccMarpmiarb COCTORWHM it3 

nayx~CTe~:BHCUIHe~06nBCTH,KOTOpaK BIcIIiOoYaeT ~~b~~ %iCTb nO~HHqHOrOCR0~ E E KOTO@ 

MOSZO ll~HC6~Pb BX3KOCTbiO ii TWJiOfl~BO~OCTXdO, H BHj’TprXiH&i 06JtaCTR, B KOTOpOii MOXHO 
lTpCHc6pWIb C~J@IHMH LOHBCKTHIIH~IMH WeHaMH. BHYT~CHHSX 06flaCTb OnpenenneTCR KaK Cnoii 
IlOCTOKHHO~O TCIIJIOBO~O IlOTOoLB. 

C noMou&w, aHanH3a nono6iui non~eHsl yHmepCanbHMe npo+rma CKO~O~TH H rehmeparypbt 80 
BHellllieil C86Jlac7H CJIOR H B O6JlaCTU IlOCTORHHOrO TellJlOBO~O BOTOKa. HClIOllb3yn aC&iMnTOTHYeCKOe 

~pawne 3Tm npo$nneil e nponiexyTovHor4 cnoe (noncme) npn Jf, = g/iFo@/1n3+ x, MOXHO 
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~OJl)‘YHTb CJlCnyKUUHC tUGSJlHTH‘K?CKHC Bbl&WUeHiDl AJHI IlpO@JlCfi B CBO60AHOKOHBCKTHBHOM IlOACJfOC 

T- T, Y 0 
- f,3 

-=lu, - 
r, tt + & Prh 

me K,, K2---ywme~b~~e noCTOmHbJe, a A(Pr), B(Pr)- yHHBepcanbHbIe (P~HKUHH KpHTepwn 

~paenmn. ,hiMIITOTHvCCKHe 3aKoHb1 nepeHOca Term H T~~HWI 3anHcbIBamTcn B mne Nu, = 
cuff,+“*, T,/f.# = c,(h), rAe ch(f+) CBR3BHO IlpoCTbIM COOTHOUJeHHCM C id(h). 

M HSLYOHCU, IiOKa3aHO. ‘(TO Ha CTCHKC HMUOT MeCTO TCIlJlO~~BOASlIWfk It TCpMOBSl,KHfi CJTOH, 

Xa~KTC~H3j’IOtUHCCS JIHHCiiHbIhiH 3aKOHaMH HllMCHCHHR CXOPOCTH H TeMlle~Typbl. nOJIy?eHHbIe 

p3yRbTaTbi ~C'&TOB XOpOUIO COrJlWyloTCX C ~e~~~HC~ B 60JZbiUOM KOJIHYCCTBe 3KCWp%MCH- 

T~bH~KAaH~~H. 


